Mechanisms underlying capsaicin-stimulated secretion in the stomach: comparison with mucosal acidification.
نویسندگان
چکیده
The effects of capsaicin and mucosal acidification on gastric HCO3(-) secretion were compared in wild-type and prostacyclin (PGI2) IP receptor or prostaglandin E receptor EP1 or EP3 knockout C57BL/6 mice as well as rats. Under urethane anesthesia, the stomach was mounted on an ex vivo chamber, perfused with saline, and the secretion of HCO3(-) was measured at pH 7.0 using the pH-stat method. Capsaicin or 200 mM HCl was applied to the chamber for 10 min. Capsaicin increased the secretion of HCO3(-) in rats and wild-type mice, the response at 0.3 mg/ml being equivalent to that induced by acidification. This effect of capsaicin in rats was abolished by ablation of capsaicin-sensitive afferent neurons and attenuated by indomethacin, N(G)-nitro-L-arginine methylester (L-NAME), and capsazepine [transient receptor potential vanilloid type 1 (TRPV1) antagonist] but not FR172357 [3-bromo-8-[2,6-dichloro-3-[N[(E)-4-(N,N-dimethylcarbamoyl) cinnamidoacetyl]-N-methylamino]benzyloxy]-2-metylimidazo[1,2-a]pyridine; bradykinin B2 antagonist] or the EP1 antagonist. The acid-induced HCO3(-) secretion was attenuated by indomethacin, L-NAME, the EP1 antagonist, and sensory deafferentation, but not affected by capsazepine or FR172357. Prostaglandin E2 (PGE2), NOR-3 [(+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamine] (NO donor), and bradykinin stimulated the secretion of HCO3(-), and the effect of bradykinin was blocked by indomethacin and L-NAME as well as FR172357. The stimulatory effect of capsaicin disappeared in IP (-/-) mice, whereas that of acidification disappeared in EP1 (-/-) mice. Intragastric application of capsaicin increased mucosal PGI2 but not PGE2 levels in the rat stomach. These results suggested that both capsaicin and acid increase gastric HCO3(-) secretion via a common pathway, involving PG and NO as well as capsaicin-sensitive afferent neurons, yet their responses differ concerning TRPV1 or prostanoid receptor dependence.
منابع مشابه
Mechanism of Capsaicin-Stimulated Gastric HCO3- Secretion – Comparison with Mucosal Acidification
متن کامل
Effect of sodium hydrosulfide on mRNA expression of prostaglandin E2 receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats
Objective(s): Prostaglandins have been shown to mediate the gastro-protective effect of sodium hydrosulfide (NaHS) but effect of NaHS on mRNA expression of prostaglandin E2 receptors (EP1, 3-4; EPs) has not been investigated. Therefore, this study designed to evaluate the effect of NaHS on mRNA expression of EPs receptors in response to mucosal acidification and distention-induced gastric acid ...
متن کاملEffect of thyroid hormones on basal and stimulated gastric acid secretion due to histamine, carbachol, and pentagastrin in rat (an in vitro study)
Although thyroid hormones are known to influence acid secretion, but exact mechanisms are not fully understood. So, in this experimental study carbachol, histamine, and pentagastrin were used to stimulate acid secretion in isolated stomach of hypo- and hyperthyroid rats and data were compared with controls. Each group consisted of 8 N-Mari rats from both sexes weighing 246 ± 5 g. Hypo- and hype...
متن کاملNeural control of the release and action of secretin.
The release and physiological actions of secretin on pancreatic exocrine secretion and gastric secretion of acid and motility are regulated by neuro-hormonal control. The release of secretin by duodenal acidification is mediated by a secretin releasing peptide (SRP). The release and action of SRP are neurally mediated depending on vagal afferent pathway. SRP activity in acid perfusate of the du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 315 1 شماره
صفحات -
تاریخ انتشار 2005